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ABSTRACT

The x-ray Computed Tomography (CT) images with sparse-view data acquisition
contain severe angular aliasing artifacts. The common denoising filters do not work
well if they are used to reduce the artifacts. The state-of-the-art methods to process
the sparse-view CT images are deep-learning based; they require a large amount of
training data pairs. This paper considers a situation where no clinical training data
sets are available. All we have is one sparse scan of a patient. This paper attempts to
use a BM3D filter to reduce the artifacts by using an artifact power spectral density
function, which is calculated with computer simulations. The results in this paper show
that the proposed method is promising in computer simulations. The proposed method
has been applied to patient data, and we observe that the sparse-view artifacts are
reduced, especially in the central region of the image, but the artifact reduction is not
as effective at the peripheral if the control parameter in the BM3D filter is not
properly chosen.

INTRODUCTION

The motivation for using low-dose x-ray Computed Tomography (CT) is to reduce the
patient radiation exposure [1-3]. Since x-ray radiation exposure may play a role in
getting cancers, it is advised to reduce the x-ray exposure to an As-Low-As-
Reasonably-Achievable (ALARA) level [4]. One way of low-dose imaging is the
sparse-view method, but sparse angular sampling frequently leads to characteristic
streak artifacts. These artifacts sometimes are referred to as the angular aliasing
artifacts [5]. We do not consider other methods of low-dose CT scans such as reducing
the X-ray tube current [6-8]. This under sampling situation is also a case of
compressed sensing [92,10]. The drawbacks of using reduced radiation exposure
include increased noise and artifacts in the CT images. Before reduced radiation dose
is used in clinical scans, noise and artifacts must be controlled at the level as if the
regular dose is used. The goal of this paper is to investigate whether the sparse-view
artifacts can be managed through filtering.

Many researchers attempted to solve this compressed sensing problem. One method is
the iterative image reconstruction method that minimizes the Total-Variation (TV) norm
or other measures of the image [11-17]. Most recently, research activities are mainly
in the deep learning area [18-25]. It is fair to say that deep learning methods are
dominating the current publications and conferences. In general, it is unsuccessful to
use a denoising filter to combat the artifacts, because the artifacts are shift variant

and have certain patterns. There are countless linear and nonlinear filters for noise
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control. In this paper, we use the term ‘filter’ for an image
processing procedure. The application of the hardware X-
ray filters (e.g., filters containing Cu or Sn) is not in the scope
of this paper.

This paper investigates a nonlinear filter that is not deep
learning based. Our filter is based on the BM3D denoising
method, which was proposed by Dabov et al. [26,27]. The
consideration of the BM3D filter in this paper is motivated by
the fact that the BM3D filter is currently the state-of-the-art
in terms of noise control. The BM3D method uses block
matching and aggregation strategies to obtain three-
dimensional image blocks; its denoising uses Wiener filtering.
The BM3D method requires two inputs: the noisy raw image
and the noise power spectral density image. The original
purpose of BM3D is for random noise reduction. In our
application of sparse-view tomography, our main concern is
the angular aliasing streak artifacts. These artifact patterns
are deterministic and object dependent. Artifacts are not
random noise. These artifacts are usually more pronounced
than the random noise. The strategy of this paper is to treat
the deterministic artifacts as random noise when calculating
the ‘noise’ power spectral density function (image).

METHODS

‘Noise’ power spectral density
For a given CT image, G, resulted from sparse-view projection
measurements, its associated artifact power spectral density
function, P, is difficult to obtain. This is because the true image,
T, is not available. In this paper, the artifact power spectral
density function, P, is estimated by noiseless computer
simulations, which simulate true image and reconstruction from
sparse-scan projections of some random objects. The true
images are treated as the gold standard images, Tsimu.
The artifact image, A, is the differences between the gold
standard true image, Tim,, and the given sparse-scan image,
Gsimu:

A= Temy — Geimu- (1)
In this paper, we use 1000 random simulated obijects.
Therefore, we have 1000 two-dimensional artifact images,
A's.
Let B be the two-dimensional Fourier transform of image A
defined in Equation (1). For each element in B, we calculate its

squared norm and denote the resulting frequency-domain
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image as P. This resultant two-dimensional image, P, has the same
dimension as the image A, is real, and is nonnegative. Even in the
noiseless cases, P is not zero due to the sparse-view streaking
artifacts. In forming 1000 versions of P, no noise is added.
Therefore, the image P is better referred to as the artifact spectral
function (instead of the noise spectral function).
Let P be the average artifact power spectral density image from
our 1000 artifact power spectral density images, P’s. This
averaged artifact power spectral density image P is used in the
proposed algorithm.
The proposed algorithm
In the conventional BM3D algorithm, the noise is assumed to be
stationary. The Wiener filter is used for denoising in the BM3D
algorithm. The Wiener filter assumes stationary noise with a noise
power spectral density function F. However, the artifacts are not
stationary. Strictly speaking, it is not proper to use our artifact
power spectral density function in the BM3D algorithm. Despite of
these concerns, we propose an ad hoc algorithm:

H = BM3D(G7. P), (2)
where Gcr is a two-dimensional given sparse-view CT image, F is
the averaged artifact spectral density image estimated by
computer simulations, H is the processed output image, and BM3D

is the conventional BM3D algorithm.

Table 1: Designations and their definitions.

Designation Definition
Tatmu True image
Gigimy Sparse-scan image
A Artifact image
B Fourier transform of image A
P Element-by-element squared norm of B; artifact power spectral
image
F Averaged artifact power spectral density image
Gor A two-dimensional given sparse-view CT image to be processed
H The output image of BM3D

We must point out that in calculating F, the sparse simulation Ggimy
in Equation (1) must have the same imaging and sampling
parameters as the situation when sparse-scan CT image, Gcr, is
obtained. For example, if Gcr is reconstructed from a data set of
180 views and with a focal-point to axis-of-rotation of 600 mm,
the P image must be obtained using 180 views and 600 mm as
well for the sparse-view data. The image reconstruction algorithm

must also to be identical for both the computer simulated data and

the patient data.
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Some notations are summarized in Table 1 in the order of
their appearance in the paper.

Computer simulations

We generated 1000 noiseless random 512X512 phantoms,
each of which had two random ellipses of random shapes,
random locations, and random intensities. We generated a
sparse scan for each phantom: 180 views evenly distributed
over 360°. Images were reconstructed using the Filtered
Backprojection (FBP) algorithm. One averaged artifact power
spectral density image, F, was calculated from these 1000
phantoms.

We then generated another set of new random 512X512
phantoms and generated corresponding sparse scans with
180 views (test case). The testing phantoms had three random
ellipses. Therefore, the testing phantoms and the learning
phantoms are different. The FBP reconstruction, Gcr, was
calculated from the new test case 180-view data. The
proposed algorithm (2) was then applied to the FBP
reconstruction, Ger, and to obtain the final image, H.

Clinical data

The clinical data used in this paper was acquired from a
cadaver for research purposes. It was a full-body scan with
1200 views per rotation. A subset of the projection data was
used in our study in the paper. The subset had 180 views
evenly distributed over 360°. The x-ray source trajectory was
a circle of radius 600 mm. The detector had 320 rows, the
row-height was 0.5 mm, each row had 896 channels, and the
fan angle was 49.2°. Slices at the abdomen region is shown in
the Results section. In this paragraph we explain the
relationship between the computer simulations and the clinical
data. The proposed algorithm does not work without the
simulations. This is because the BM3D filter requires a power
spectrum that carries the information of the angular aliasing
artifacts. The artifact pattern can only be created by
computer simulations. We would like this pattern to be object
independent. Our strategy of creating such a pattern is to use
1000 random ‘learning’ phantoms. We project each phantom
to obtain a sparse sinogram and then calculate the FBP
reconstruction. The reconstruction contains severe angular
aliasing artifacts due to the lack of view angles. The artifacts
are extracted from the reconstruction. The average of the

artifact power spectra from the 1000 random phantoms is
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calculated as P. In a clinical application, the proposed BM3D filter
needs two inputs: the reconstruction of the clinical image that

suffered from angular aliasing artifacts and the artifact power

spectral density image F estimated from the 1000 random
phantom simulations.

RESULTS AND DISCUSSION

Computer simulation resulis

Figure 1: The first two of the 1000 computer simulated random true
images. These phantoms are referred to as the learning phantoms.
Each random phantom contains two ellipses of random sizes and
random intensities.

Figure 2: Computer simulated random sparse-scan images
corresponding to images in Figure 1. Streaking artifacts are
observed. The ARTIFACTS are due the lack of angular

Figure 1 shows the first two of the 1000 random ‘learning’
phantoms. Their sparse-view data reconstructions versions using
180 views are shown in Figure 2, where some angular aliasing
artifacts can be visualized in the background. Figure shows the
average artifact power spectral density image by considering
1000 sparse/true pairs of the simulated images. Two new
random phantom sparse-scan images are shown in Figure 4.
These new testing phantoms are NOT among the 1000 learning
phantoms used in estimating the artifact power spectral density
image, because the new testing phantoms contain three ellipses

while the old learning phantoms contain two ellipses. The results
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of the proposed method are shown in Figure 5, where the
angular aliasing artifacts in the background are significantly

reduced.

Figure 3: The averaged artifact power spectral density image

for the computer simulation study corresponding to images in

Figure 1. The power spectral density image is computed in the

Fourier domain. The center of the image is the zero frequency.
The corners are the high frequencies.

Figure 4: The testing sparse-scan images, which contain three
ellipses and are not included in the 1000 random phantoms.
Angular aliasing artifacts are observed.

Figure 5. The testing sparse-scan images processed by the
proposed method, corresponding to the images in Figure 4. The
angular aliasing streaking artifacts are essentially removed.

LITERATURE

Eight patient image pairs from two different patients are shown
in (Figure 6-13), respectively. The images are sparse-scan images
without and with the proposed BM3D processing. It is observed
that the proposed algorithm is partially successful in reducing the
angular aliasing artifacts. The proposed algorithm is more
effective in the central region of the image. Each of the CT
patient study has many different slices. Data from two different
patients are used. Results from slices 100, 120, 140, and 160 of
the first patient and results from slices 50, 60, 70, and 80 are
presented. The main drawback of the proposed method is that
the BM3D filter tends to over smooth the images. This drawback is
also observed for the TV method. The BM3D method has a user
selected hyper parameter. If the parameter is not properly
chosen, the image may be either over smoothed or artifacts are
not removed. How to select this hyper parameter is ad hoc. Two
selections of this parameter are used in the patient data
processing: 0.002 and 0.0002. The parameter of 0.002 in the
BM3D filter makes the image over smoothed. However, the
artifacts are still visible if the parameter of 0.0002 is used in the

BM3D filter.

Figure 6: The testing sparse-scan images processed by the TV
method, corresponding to the images in Figure 4.

B (BM3D 0.002)
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C (BM3D 0.0002) D (TV)

Figure 6: [Patient #1] The sparse-scan patient image slice
#160: (A) without processing, (B) with proposed BM3D filter
using parameter 0.002, (C) with proposed BM3D filter using

parameter 0.0002, and (D) with TV filter.

A (raw) B (BM3D 0.002)

C (BM3D 0.0002)

D (TV)

Figure 6.1: [Patient #1] The sparse-scan patient image slice

#160: (A) without processing, (B) with proposed BM3D filter

using parameter 0.002, (C) with proposed BM3D filter using
parameter 0.0002, and (D) with TV filter.

The purpose of the computer simulations with 1000 random
phantoms is to generate an artifact power spectrum image
P. The first two of the 1000 computer simulated random
true images are shown in Figure 1. Each random phantom
contains ellipses of random sizes and random intensities. A
sinogram is generated with 180 views evenly distributed
over 360°% and then the FBP algorithm is used for images

reconstruction. It is seen in Figure 2 that the reconstructions
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contain the streaking angular aliasing artifacts. No noise is
added to the projections. The artifacts are caused by the imaging
geometry. The metric of numerical evaluation is the matrix L2
norm of the difference image between the true image and the
FBP reconstruction is calculated. The numerical evaluation results
are listed in Table 2 for the computer simulations, and in Table 3
for the clinical data studies. An iterative Total-Variation (TV) norm
minimization algorithm is implemented and compared with the
BM3D method. These two methods show comparable
performances. The drawback of these two algorithms is that they
depend on some hyper parameters. The hyper parameters are
chosen ad hoc. If the parameters are not properly chosen, the
resultant image may be over smoothed or may still contain the

artifacts.

A (raw) B (BM3D 0.002)

&

~p

C (BM3D 0.0002) D (TV)

Figure 7: [Patient #1] The sparse-scan patient image slice #140: (A)
without processing, (B) with proposed BM3D filter using parameter
0.002, (C) with proposed BM3D filter using parameter 0.0002, and
(D) with TV filter.

DISCUSSION AND CONCLUSIONS

The innovative idea in this paper is to replace the noise power
spectral density image by the artifact power spectral density
image. The artifact power spectral density image is estimated by
random

1000 computer simulated random phantoms. The

learning phantoms only contain two ellipses and do not look like
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human torsos at all. Unlike the common practice in machine
learning, where the training data are very similar to the
testing data. Why do we need as many as 1000 random
images to estimate the artifact power spectral density
image? To answer this question, let us look at Figure 14,
where two artifact images calculated by (1) are shown. The
artifact images contain artifacts also contain some shape
information of the random phantoms. We do not want the
phantom information leak into the artifact power spectral
density image. By using the average of a large number of
the artifact power spectral density images, the influence of

the phantom shape information can be significantly reduced.

A (raw) B (BM3D 0.002)

C (BM3D 0.0002)

D (TV)

Figure 8: [Patient #1] The sparse-scan patient image slice
#120: (A) without processing, (B) with proposed BM3D filter
using parameter 0.002, (C) with proposed BM3D filter using

parameter 0.0002, and (D) with TV filter.

We have attempted a method to reduce the sparse-scan
angular aliasing artifacts without using any patient training
data. This method is a direct application of the BM3D filter
by replacing the noise power spectral density function with
the artifact power spectral density function. On the other
hand, the method of using a point source to estimate the
Point Spread Function (PSF) does not work. This is because

the angular aliasing artifacts are object size dependent. The

G SCIENTIFIC
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required number of views in tomography data acquisition is
proportional to the diameter of the object. The artifact creation is
not a linear and shift-invariant phenomenon. A point source can
be exactly reconstructed by using only two views. The BM3D filter
assumes stationary noise that is characterized by the noise power
spectral density function. Noise and artifacts are never the same.
Noise is random, while artifacts are somewhat deterministic.
Artifacts are not stationary. Strictly speaking, the artifact power
spectral density function does not exist because it is not

stationary.

A (raw) B (BM3D 0.002)

C (BM3D 0.0002)

D (TV)

Figure 9: [Patient #1] The sparse-scan patient image slice #100: (A)
without processing, (B) with proposed BM3D filter using parameter
0.002, (C) with proposed BM3D filter using parameter 0.0002, and
(D) with TV filter.

Our ad hoc method assumes the norm square of the Fourier
transform of the error image as the artifact power spectral density
function, which is calculated with computer simulations and depends
on the imaging geometry only. Patient data is not used in finding
the artifact power spectral density function. Our results indicate
that the proposed method is not yet effective enough for practical
applications. If the hyper parameter in BM3D filter is not properly
chosen, the artifacts are still present, and the images are over-

smoothed after processing. More work needs to be done. However,
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insights our from this study suggest that some features can be
obtained by simulations when there is no real data available.
Another thing we observe is that the Wiener filter is not an
effective method to remove artifacts, and a better approach

should be considered.

£
Y

A (raw) B (BM3D 0.002)
»

A (raw) B (BM3D 0.002)

C (BM3D 0.0002) D(TV)

\ Figure 11: [Patient #2] The sparse-scan patient image slice
}fﬁ #70: (A) without processing, (B) with proposed BM3D filter
using parameter 0.002, (C) with proposed BM3D filter using

parameter 0.0002, and (D) with TV filter.

C (BM3D 0.0002) D (BM3D)

Figure 10: [Patient #2] The sparse-scan patient image slice

#80: (A) without processing, (B) with proposed BM3D filter

using parameter 0.002, (C) with proposed BM3D filter using
parameter 0.0002, and (D) with TV filter.
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A (raw) B (BM3D 0.002)

C (BM3D 0.0002) D (TV)

Figure 12: [Patient #2] The sparse-scan patient image slice
#60: (A) without processing, (B) with proposed BM3D filter using
parameter 0.002, (C) with proposed BM3D filter using
parameter 0.0002, and (D) with TV filter.
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A (raw)

B (BM3D 0.002)

Table 3: Mean squared error of different artifact removal methods
using clinical data.

C (BM3D 0.0002) D (TV)

Figure 13: [Patient #2] The sparse-scan patient image slice
#50: (A) without processing, (B) with proposed BM3D filter
using parameter 0.002, (C) with proposed BM3D filter using

parameter 0.0002, and (D) with TV filter.

Proposed Proposed
Slice number Raw method method TV method
(0.002) (0.0002)
100 (patient #1) | 346.79 5.0650 12.899 8.1203
120 (patient #1) | 360.40 3.6040 13.001 8.1825
140 (patient #1) | 382.79 4.8907 12.810 7.7631
160 (patient #1) | 386.75 4.4841 11.729 8.1034
50 (patient #1) 359.45 4.2961 9.8627 7.0827
60 (patient #1) 355.34 4.5427 10.181 7.3332
70 (patient #1) 349.22 4.5455 9.8969 7.0459
80 (patient #1) 343.58 4.4938 9.9216 7.0175

Table 2: Mean squared error of different artifact removal

methods using computer simulated data.

Figure 14: One example of artifact images calculated for the
computer simulated random phantoms.

Phantom Raw Proposed method TV method
1 4.1836 2.0298 2.9412
2 3.4784 1.8826 3.8068
3 3.3696 1.7359 2.3718
4 7.3443 1.6206 7.5332
5 3.9122 1.4504 4.1005
6 3.7584 1.3857 3.9307
7 14.3733 2.5038 14.4774
8 5.1276 1.9214 5.4700
9 5.4813 1.8168 5.7350
10 7.4323 1.6374 7.5671
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