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ABSTRACT 

The x-ray Computed Tomography (CT) images with sparse-view data acquisition 

contain severe angular aliasing artifacts. The common denoising filters do not work 

well if they are used to reduce the artifacts. The state-of-the-art methods to process 

the sparse-view CT images are deep-learning based; they require a large amount of 

training data pairs. This paper considers a situation where no clinical training data 

sets are available. All we have is one sparse scan of a patient. This paper attempts to 

use a BM3D filter to reduce the artifacts by using an artifact power spectral density 

function, which is calculated with computer simulations. The results in this paper show 

that the proposed method is promising in computer simulations. The proposed method 

has been applied to patient data, and we observe that the sparse-view artifacts are 

reduced, especially in the central region of the image, but the artifact reduction is not 

as effective at the peripheral if the control parameter in the BM3D filter is not 

properly chosen. 

INTRODUCTION 

The motivation for using low-dose x-ray Computed Tomography (CT) is to reduce the 

patient radiation exposure [1-3]. Since x-ray radiation exposure may play a role in 

getting cancers, it is advised to reduce the x-ray exposure to an As-Low-As-

Reasonably-Achievable (ALARA) level [4]. One way of low-dose imaging is the 

sparse-view method, but sparse angular sampling frequently leads to characteristic 

streak artifacts. These artifacts sometimes are referred to as the angular aliasing 

artifacts [5]. We do not consider other methods of low-dose CT scans such as reducing 

the X-ray tube current [6-8]. This under sampling situation is also a case of 

compressed sensing [9,10]. The drawbacks of using reduced radiation exposure 

include increased noise and artifacts in the CT images. Before reduced radiation dose 

is used in clinical scans, noise and artifacts must be controlled at the level as if the 

regular dose is used. The goal of this paper is to investigate whether the sparse-view 

artifacts can be managed through filtering. 

Many researchers attempted to solve this compressed sensing problem. One method is 

the iterative image reconstruction method that minimizes the Total-Variation (TV) norm 

or other measures of the image [11-17]. Most recently, research activities are mainly 

in the deep learning area [18-25]. It is fair to say that deep learning methods are 

dominating the current publications and conferences. In general, it is unsuccessful to 

use a denoising filter to combat the artifacts, because the artifacts are shift variant 

and have certain patterns. There are countless linear and nonlinear filters for noise 
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control. In this paper, we use the term ‘filter’ for an image 

processing procedure. The application of the hardware X-

ray filters (e.g., filters containing Cu or Sn) is not in the scope 

of this paper. 

This paper investigates a nonlinear filter that is not deep 

learning based. Our filter is based on the BM3D denoising 

method, which was proposed by Dabov et al. [26,27]. The 

consideration of the BM3D filter in this paper is motivated by 

the fact that the BM3D filter is currently the state-of-the-art 

in terms of noise control. The BM3D method uses block 

matching and aggregation strategies to obtain three-

dimensional image blocks; its denoising uses Wiener filtering. 

The BM3D method requires two inputs: the noisy raw image 

and the noise power spectral density image. The original 

purpose of BM3D is for random noise reduction. In our 

application of sparse-view tomography, our main concern is 

the angular aliasing streak artifacts. These artifact patterns 

are deterministic and object dependent. Artifacts are not 

random noise. These artifacts are usually more pronounced 

than the random noise. The strategy of this paper is to treat 

the deterministic artifacts as random noise when calculating 

the ‘noise’ power spectral density function (image). 

METHODS 

‘Noise’ power spectral density 

For a given CT image, G, resulted from sparse-view projection 

measurements, its associated artifact power spectral density 

function, P, is difficult to obtain. This is because the true image, 

T, is not available. In this paper, the artifact power spectral 

density function, P, is estimated by noiseless computer 

simulations, which simulate true image and reconstruction from 

sparse-scan projections of some random objects. The true 

images are treated as the gold standard images, Tsimu. 

The artifact image, A, is the differences between the gold 

standard true image, Tsimu, and the given sparse-scan image, 

Gsimu: 

 

In this paper, we use 1000 random simulated objects. 

Therefore, we have 1000 two-dimensional artifact images, 

A’s.  

Let B be the two-dimensional Fourier transform of image A 

defined in Equation (1). For each element in B, we calculate its 

squared norm and denote the resulting frequency-domain 

image as P. This resultant two-dimensional image, P, has the same 

dimension as the image A, is real, and is nonnegative. Even in the 

noiseless cases, P is not zero due to the sparse-view streaking 

artifacts. In forming 1000 versions of P, no noise is added. 

Therefore, the image P is better referred to as the artifact spectral 

function (instead of the noise spectral function). 

Let  be the average artifact power spectral density image from 

our 1000 artifact power spectral density images, P’s. This 

averaged artifact power spectral density image  is used in the 

proposed algorithm. 

The proposed algorithm 

In the conventional BM3D algorithm, the noise is assumed to be 

stationary. The Wiener filter is used for denoising in the BM3D 

algorithm. The Wiener filter assumes stationary noise with a noise 

power spectral density function . However, the artifacts are not 

stationary. Strictly speaking, it is not proper to use our artifact 

power spectral density function in the BM3D algorithm. Despite of 

these concerns, we propose an ad hoc algorithm: 

 

where GCT is a two-dimensional given sparse-view CT image,  is 

the averaged artifact spectral density image estimated by 

computer simulations, H is the processed output image, and BM3D 

is the conventional BM3D algorithm.  

 

Designation Definition 

 True image 

 Sparse-scan image 

 Artifact image 

 Fourier transform of image A 

 

Element-by-element squared norm of B; artifact power spectral 

image 

 Averaged artifact power spectral density image 

 A two-dimensional given sparse-view CT image to be processed 

 The output image of BM3D 

 

We must point out that in calculating , the sparse simulation Gsimu 

in Equation (1) must have the same imaging and sampling 

parameters as the situation when sparse-scan CT image, GCT, is 

obtained. For example, if GCT is reconstructed from a data set of 

180 views and with a focal-point to axis-of-rotation of 600 mm, 

the P image must be obtained using 180 views and 600 mm as 

well for the sparse-view data. The image reconstruction algorithm 

must also to be identical for both the computer simulated data and 

the patient data. 

Table 1: Designations and their definitions. 
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Some notations are summarized in Table 1 in the order of 

their appearance in the paper. 

Computer simulations 

We generated 1000 noiseless random 512×512 phantoms, 

each of which had two random ellipses of random shapes, 

random locations, and random intensities. We generated a 

sparse scan for each phantom: 180 views evenly distributed 

over 360°. Images were reconstructed using the Filtered 

Backprojection (FBP) algorithm. One averaged artifact power 

spectral density image, , was calculated from these 1000 

phantoms. 

We then generated another set of new random 512×512 

phantoms and generated corresponding sparse scans with 

180 views (test case). The testing phantoms had three random 

ellipses. Therefore, the testing phantoms and the learning 

phantoms are different. The FBP reconstruction, GCT, was 

calculated from the new test case 180-view data. The 

proposed algorithm (2) was then applied to the FBP 

reconstruction, GCT, and to obtain the final image, H. 

Clinical data 

The clinical data used in this paper was acquired from a 

cadaver for research purposes. It was a full-body scan with 

1200 views per rotation.  A subset of the projection data was 

used in our study in the paper. The subset had 180 views 

evenly distributed over 360°. The x-ray source trajectory was 

a circle of radius 600 mm. The detector had 320 rows, the 

row-height was 0.5 mm, each row had 896 channels, and the 

fan angle was 49.2°. Slices at the abdomen region is shown in 

the Results section. In this paragraph we explain the 

relationship between the computer simulations and the clinical 

data. The proposed algorithm does not work without the 

simulations. This is because the BM3D filter requires a power 

spectrum that carries the information of the angular aliasing 

artifacts. The artifact pattern can only be created by 

computer simulations. We would like this pattern to be object 

independent.  Our strategy of creating such a pattern is to use 

1000 random ‘learning’ phantoms. We project each phantom 

to obtain a sparse sinogram and then calculate the FBP 

reconstruction. The reconstruction contains severe angular 

aliasing artifacts due to the lack of view angles. The artifacts 

are extracted from the reconstruction. The average of the 

artifact power spectra from the 1000 random phantoms is 

calculated as . In a clinical application, the proposed BM3D filter 

needs two inputs: the reconstruction of the clinical image that 

suffered from angular aliasing artifacts and the artifact power 

spectral density image  estimated from the 1000 random 

phantom simulations. 

RESULTS AND DISCUSSION 

Computer simulation results 

 

 

 

 

 

 

Figure 1 shows the first two of the 1000 random ‘learning’ 

phantoms. Their sparse-view data reconstructions versions using 

180 views are shown in Figure 2, where some angular aliasing 

artifacts can be visualized in the background. Figure shows the 

average artifact power spectral density image by considering 

1000 sparse/true pairs of the simulated images. Two new 

random phantom sparse-scan images are shown in Figure 4. 

These new testing phantoms are NOT among the 1000 learning 

phantoms used in estimating the artifact power spectral density 

image, because the new testing phantoms contain three ellipses 

while the old learning phantoms contain two ellipses. The results 

  

Figure 1: The first two of the 1000 computer simulated random true 
images. These phantoms are referred to as the learning phantoms. 
Each random phantom contains two ellipses of random sizes and 

random intensities. 

     

Figure 2: Computer simulated random sparse-scan images 
corresponding to images in Figure 1. Streaking artifacts are 

observed. The ARTIFACTS are due the lack of angular 
measurements. 
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of the proposed method are shown in Figure 5, where the 

angular aliasing artifacts in the background are significantly 

reduced. 

 

Patient data results 

 

 

 

 

 

Eight patient image pairs from two different patients are shown 

in (Figure 6-13), respectively. The images are sparse-scan images 

without and with the proposed BM3D processing. It is observed 

that the proposed algorithm is partially successful in reducing the 

angular aliasing artifacts. The proposed algorithm is more 

effective in the central region of the image. Each of the CT 

patient study has many different slices. Data from two different 

patients are used. Results from slices 100, 120, 140, and 160 of 

the first patient and results from slices 50, 60, 70, and 80 are 

presented. The main drawback of the proposed method is that 

the BM3D filter tends to over smooth the images. This drawback is 

also observed for the TV method. The BM3D method has a user 

selected hyper parameter. If the parameter is not properly 

chosen, the image may be either over smoothed or artifacts are 

not removed. How to select this hyper parameter is ad hoc.  Two 

selections of this parameter are used in the patient data 

processing: 0.002 and 0.0002. The parameter of 0.002 in the 

BM3D filter makes the image over smoothed. However, the 

artifacts are still visible if the parameter of 0.0002 is used in the 

BM3D filter. 

 

 

 

 

 

Figure 3: The averaged artifact power spectral density image 
for the computer simulation study corresponding to images in 

Figure 1. The power spectral density image is computed in the 
Fourier domain. The center of the image is the zero frequency. 

The corners are the high frequencies.  

   

Figure 4: The testing sparse-scan images, which contain three 
ellipses and are not included in the 1000 random phantoms. 

Angular aliasing artifacts are observed.  

   

Figure 5. The testing sparse-scan images processed by the 
proposed method, corresponding to the images in Figure 4. The 

angular aliasing streaking artifacts are essentially removed. 

   

Figure 6: The testing sparse-scan images processed by the TV 
method, corresponding to the images in Figure 4. 

     

A (raw)   B (BM3D 0.002) 
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The purpose of the computer simulations with 1000 random 

phantoms is to generate an artifact power spectrum image 

.  The first two of the 1000 computer simulated random 

true images are shown in Figure 1. Each random phantom 

contains ellipses of random sizes and random intensities. A 

sinogram is generated with 180 views evenly distributed 

over 360⁰, and then the FBP algorithm is used for images 

reconstruction. It is seen in Figure 2 that the reconstructions 

contain the streaking angular aliasing artifacts. No noise is 

added to the projections. The artifacts are caused by the imaging 

geometry. The metric of numerical evaluation is the matrix L2 

norm of the difference image between the true image and the 

FBP reconstruction is calculated. The numerical evaluation results 

are listed in Table 2 for the computer simulations, and in Table 3 

for the clinical data studies. An iterative Total-Variation (TV) norm 

minimization algorithm is implemented and compared with the 

BM3D method. These two methods show comparable 

performances. The drawback of these two algorithms is that they 

depend on some hyper parameters. The hyper parameters are 

chosen ad hoc. If the parameters are not properly chosen, the 

resultant image may be over smoothed or may still contain the 

artifacts. 

 

 

 

DISCUSSION AND CONCLUSIONS 

The innovative idea in this paper is to replace the noise power 

spectral density image by the artifact power spectral density 

image. The artifact power spectral density image is estimated by 

1000 computer simulated random phantoms. The random 

learning phantoms only contain two ellipses and do not look like 

   

C (BM3D 0.0002)  D (TV) 

Figure 6: [Patient #1] The sparse-scan patient image slice 
#160: (A) without processing, (B) with proposed BM3D filter 
using parameter 0.002, (C) with proposed BM3D filter using 

parameter 0.0002, and (D) with TV filter.  

   

A (raw)         B (BM3D 0.002) 

   

C (BM3D 0.0002)   D (TV) 

Figure 6.1: [Patient #1] The sparse-scan patient image slice 

#160: (A) without processing, (B) with proposed BM3D filter 

using parameter 0.002, (C) with proposed BM3D filter using 

parameter 0.0002, and (D) with TV filter. 

   

A (raw)    B (BM3D 0.002) 

   

C (BM3D 0.0002)    D (TV)  

Figure 7: [Patient #1] The sparse-scan patient image slice #140: (A) 

without processing, (B) with proposed BM3D filter using parameter 

0.002, (C) with proposed BM3D filter using parameter 0.0002, and 

(D) with TV filter.  
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human torsos at all. Unlike the common practice in machine 

learning, where the training data are very similar to the 

testing data. Why do we need as many as 1000 random 

images to estimate the artifact power spectral density 

image? To answer this question, let us look at Figure 14, 

where two artifact images calculated by (1) are shown. The 

artifact images contain artifacts also contain some shape 

information of the random phantoms. We do not want the 

phantom information leak into the artifact power spectral 

density image. By using the average of a large number of 

the artifact power spectral density images, the influence of 

the phantom shape information can be significantly reduced. 

 

 

 

 

We have attempted a method to reduce the sparse-scan 

angular aliasing artifacts without using any patient training 

data. This method is a direct application of the BM3D filter 

by replacing the noise power spectral density function with 

the artifact power spectral density function. On the other 

hand, the method of using a point source to estimate the 

Point Spread Function (PSF) does not work. This is because 

the angular aliasing artifacts are object size dependent. The 

required number of views in tomography data acquisition is 

proportional to the diameter of the object. The artifact creation is 

not a linear and shift-invariant phenomenon. A point source can 

be exactly reconstructed by using only two views. The BM3D filter 

assumes stationary noise that is characterized by the noise power 

spectral density function. Noise and artifacts are never the same. 

Noise is random, while artifacts are somewhat deterministic. 

Artifacts are not stationary. Strictly speaking, the artifact power 

spectral density function does not exist because it is not 

stationary.  

 

 

 

 

Our ad hoc method assumes the norm square of the Fourier 

transform of the error image as the artifact power spectral density 

function, which is calculated with computer simulations and depends 

on the imaging geometry only. Patient data is not used in finding 

the artifact power spectral density function. Our results indicate 

that the proposed method is not yet effective enough for practical 

applications. If the hyper parameter in BM3D filter is not properly 

chosen, the artifacts are still present, and the images are over-

smoothed after processing. More work needs to be done. However, 

   

A (raw)   B (BM3D 0.002) 

   

C (BM3D 0.0002)  D (TV) 

Figure 8: [Patient #1] The sparse-scan patient image slice 

#120: (A) without processing, (B) with proposed BM3D filter 

using parameter 0.002, (C) with proposed BM3D filter using 

parameter 0.0002, and (D) with TV filter.  

   

A (raw)    B (BM3D 0.002) 

   

C (BM3D 0.0002)   D (TV) 

Figure 9: [Patient #1] The sparse-scan patient image slice #100: (A) 

without processing, (B) with proposed BM3D filter using parameter 

0.002, (C) with proposed BM3D filter using parameter 0.0002, and 

(D) with TV filter.  
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insights our from this study suggest that some features can be 

obtained by simulations when there is no real data available. 

Another thing we observe is that the Wiener filter is not an 

effective method to remove artifacts, and a better approach 

should be considered. 
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A (raw)   B (BM3D 0.002) 

   

C (BM3D 0.0002)  D (BM3D) 

Figure 10: [Patient #2] The sparse-scan patient image slice 
#80: (A) without processing, (B) with proposed BM3D filter 

using parameter 0.002, (C) with proposed BM3D filter using 
parameter 0.0002, and (D) with TV filter. 

   

A (raw)   B (BM3D 0.002) 

     

C (BM3D 0.0002)  D(TV) 

Figure 11: [Patient #2] The sparse-scan patient image slice 
#70: (A) without processing, (B) with proposed BM3D filter 

using parameter 0.002, (C) with proposed BM3D filter using 
parameter 0.0002, and (D) with TV filter. 

   

A (raw)   B (BM3D 0.002) 

   

C (BM3D 0.0002)     D (TV) 

Figure 12: [Patient #2] The sparse-scan patient image slice 
#60: (A) without processing, (B) with proposed BM3D filter using 

parameter 0.002, (C) with proposed BM3D filter using 
parameter 0.0002, and (D) with TV filter. 
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Slice number Raw 

Proposed 

method 

(0.002) 

Proposed 

method 

(0.0002) 

TV method 

100 (patient #1) 346.79 5.0650 12.899 8.1203 

120 (patient #1) 360.40 3.6040 13.001 8.1825 

140 (patient #1) 382.79 4.8907 12.810 7.7631 

160 (patient #1) 386.75 4.4841 11.729 8.1034 

50 (patient #1) 359.45 4.2961 9.8627 7.0827 

60 (patient #1) 355.34 4.5427 10.181 7.3332 

70 (patient #1) 349.22 4.5455 9.8969 7.0459 

80 (patient #1) 343.58 4.4938 9.9216 7.0175 
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